What is SARE?
Since 1988, the Sustainable Agriculture Research & Education (SARE) program has been the go-to USDA grants and outreach program for farmers, ranchers, researchers and educators who want to develop innovations that improve farm profitability, protect water and land, and revitalize communities. To date, SARE has awarded over $311 million to more than 7,449 initiatives.

SARE is grassroots with far-reaching impact
Four regional councils of expert practitioners set priorities and make grants in every state and island protectorate.

SARE communicates results
SARE shares project results by requiring grantees to conduct outreach and grower engagement; and by maintaining an online library of practical publications, granteeproduced information products and other educational materials.

SARE in Georgia
southern.sare.org/sare-in-your-state/georgia

$10,400,540 in total funding
131 grant projects
(since 1988)

For a complete list of grant projects state by state, go to www.sare.org/state-summaries

Project Highlight: Wildflower Plots Boost Yields and Pollinators

The extensive loss in managed honeybee hives seen in recent years poses serious challenges to the farmers who grow crops that require pollination. Lower yields and higher pollination costs are the main threats to their businesses. Part of the solution is native bees. Across the country, far-sighted researchers and farmers are recognizing the importance of finding practices that increase native bee populations before a larger crisis hits.

In Georgia, one such farmer, Joe Dickey, has used two SARE grants to study the native bees present in his apple orchards and to establish wildflower plots that support their numbers. The effect on his apple crop was immediate: In 2016, apple production rose 30 percent from the previous two years when the wildflowers were absent from his orchard. Dickey’s next step is to compare annual wildflowers to perennial wildflowers to see which type is best at recruiting native bees.

At the same time, Dickey has been collaborating with Georgia Gwinnett College researcher Mark Schlueter on a series of five SARE grants to identify which native bees are best at pollinating apples. After looking at dozens of species, Schlueter discovered a mining bee that outshines the rest as an apple pollinator which farmers should prioritize. For more information on these projects, see sare.org/projects, and search for project numbers FS16-290 and FS17-296.
SARE Grants in Georgia

Total awards: 131 grants
28 Farmer/Rancher
18 Graduate Student
10 On Farm
Research/Partnership
7 Professional Development Program
58 Research and Education
10 Sustainable Community Innovation

Total funding: $10,400,540
$226,360 Farmer/Rancher
$197,529 Graduate Student
$148,325 On Farm
Research/Partnership
$526,896 Professional Development Program
$9,204,836 Research and Education
$96,594 Sustainable Community Innovation

Find a complete list of projects on page 3.

SARE's Impact

53 percent of producers report using a new production technique after reading a SARE publication.

79 percent of producers said they improved soil quality through their SARE project.

64 percent of producers said their SARE project helped them achieve higher sales.

Learn about local impacts at: southern.sare.org/sare-in-your-state/georgia

Contact Your SARE State Coordinator

SARE sustainable ag coordinators run state-level educational programs for Extension and other ag professionals, and many help grant applicants and recipients with planning and outreach. Visit southern.sare.org/state-pages/georgia to learn more.

Timothy Coolong
University of Georgia
(706) 542-0786
tcoolong@uga.edu

Mark Latimore
Fort Valley State University
latimorm@fvsu.edu

For detailed information on SARE projects, go to www.SARE.org

SARE is funded by the USDA’s National Institute of Food and Agriculture (NIFA).

This report includes summaries of competitive grant programs only. Some competitive grant programs that are no longer offered may be included or excluded from the totals in this report depending on the grant program and SARE region.
Georgia has been awarded $10,400,540 grants to support 128 projects, including but not limited to, 55 research and/or education projects, 7 professional development projects and 28 producer-led projects. Georgia has also received additional SARE support through multi-state projects.

RESEARCH AND EDUCATION GRANTS

<table>
<thead>
<tr>
<th>Project #</th>
<th>Project Title</th>
<th>SARE Support</th>
<th>Project Leaders</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS20-340</td>
<td>Pecan Hedge-pruning: A Sustainable Management Option for the Southeaster US</td>
<td>$299,894</td>
<td>Dr.Angel Acebes-Doria University of Georgia</td>
</tr>
<tr>
<td>LS20-322</td>
<td>HABESHA Agriculture Leadership Opportunity (HALO Program)</td>
<td>$48,440</td>
<td>Cashawn Myers HABESHA, Inc.</td>
</tr>
<tr>
<td>LS20-339</td>
<td>Exploring Agritourism to Increase Agricultural Sustainability and Resilience in the Municipality of Utuado, Puerto Rico</td>
<td>$300,000</td>
<td>Dr.Patrick Holladay Troy University Dr.Katja Brundiers Arizona State University Dr.Pablo Méndez-Lázaro University of Puerto Rico</td>
</tr>
<tr>
<td>LS19-318</td>
<td>A Working Group to Address the Challenge of Food Deserts Through Urban Agriculture</td>
<td>$50,000</td>
<td>Dr.Philip Omunga Savannah State University</td>
</tr>
<tr>
<td>LS19-309</td>
<td>Evaluating the Impact of Biostimulants on Blueberry Growth and Soil Biological Health</td>
<td>$297,119</td>
<td>Mussie Habteselassie University of Georgia-Griffin Campus</td>
</tr>
<tr>
<td>LS18-298</td>
<td>Biocontrol with Benefits: Enhancing Sustainability by Adding Value</td>
<td>$260,000</td>
<td>Dr.David Shapiro-Ilan USDA-ARS</td>
</tr>
<tr>
<td>LS18-301</td>
<td>Expanding Marketing Opportunities for Dried Nutraceutical Sericea Lespedeza Products for Small-scale Farmers</td>
<td>$290,000</td>
<td>Thomas Terrill Fort Valley State University</td>
</tr>
<tr>
<td>LS18-296</td>
<td>HABESHA Works Program Expansion and Incubator Development</td>
<td>$30,000</td>
<td>Cashawn Myers HABESHA, Inc.</td>
</tr>
<tr>
<td>LS18-293</td>
<td>Building a System of Sustainable Agriculture in the Southeast Black Belt Region Through Education and Technical Assistance</td>
<td>$47,000</td>
<td>John Littles, Sr McIntosh SEED</td>
</tr>
<tr>
<td>LS18-290</td>
<td>A Southern Cover Crop Website to Encourage Cover Crop Adoption</td>
<td>$46,998</td>
<td>Julia Gaskin University of Georgia</td>
</tr>
<tr>
<td>LS18-299</td>
<td>Sustainable Management Options for Whitefly-transmitted Viruses in Cucurbit Production</td>
<td>$290,000</td>
<td>Rajagopalababu Srinivasan University of Georgia</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Funding</td>
<td>PI(s)</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>LS17-278</td>
<td>Developing Sustainable Eastern Oyster (Crassostrea virginica) Farming in Georgia Through Evaluation of Grow-out Methodology, Distribution, and Marketing</td>
<td>$268,000</td>
<td>Thomas Bliss, University of Georgia</td>
</tr>
<tr>
<td>LS17-281</td>
<td>Increasing Practice of Sustainable Forestry Among Minority and Limited-Resource Forest Landowners in Georgia</td>
<td>$260,888</td>
<td>Dr. Puneet Dwivedi, University of Georgia</td>
</tr>
<tr>
<td>LS16-269</td>
<td>A Systems Approach for Estimating Plant Available Nitrogen from Organic Materials and Fertilizers</td>
<td>$248,324</td>
<td>Miguel Cabrera, University of Georgia</td>
</tr>
<tr>
<td>LS14-262</td>
<td>The Sustainability of Organic Farms Under the H2A Program: Evaluating the Program’s Effects on Mitigating Farm Labor Shortages and Maintaining Business Viability</td>
<td>$101,096</td>
<td>Dr. Cesar Escalante, University of Georgia</td>
</tr>
<tr>
<td>LS13-256</td>
<td>Food Hubs and the Regional Food System: Refining Our Understanding of Best Practices from Foodsheds to Operations</td>
<td>$230,000</td>
<td>Dr. Carrie Furman, University of Georgia Crop and Soil Sciences Department</td>
</tr>
<tr>
<td>LS13-257</td>
<td>Using Durana Clover as a Living Mulch in an Integrated Corn and Livestock Production System</td>
<td>$224,000</td>
<td>Dr. Nicholas Hill, University of Georgia</td>
</tr>
<tr>
<td>LS11-240</td>
<td>Organic Farms’ Credit Access and Farm Lenders’ Assessment of Organic Farms’ Credit Risks</td>
<td>$132,386</td>
<td>Dr. Cesar Escalante, University of Georgia</td>
</tr>
<tr>
<td>LS11-241</td>
<td>Enhancing Natural Enemy Systems: Biocontrol Implementation for Peachtree Borers</td>
<td>$226,100</td>
<td>Dr. David Shapiro-Ilan, USDA-ARS</td>
</tr>
<tr>
<td>LS11-243</td>
<td>Improving the Welfare of Southeastern Dairy Families Through the Adoption of Sustainable Production Systems</td>
<td>$294,409</td>
<td>Dr. Richard Lacy, UGA, Dr. Dennis Hancock, Univ. of Georgia</td>
</tr>
<tr>
<td>LS11-245</td>
<td>Assessing the Food and Environmental Safety and Economic Feasibility of Mobile Slaughter Units for Pasture Poultry Grower</td>
<td>$240,780</td>
<td>Alali Walid, University of Georgia</td>
</tr>
<tr>
<td>LS10-225</td>
<td>Evaluation of Crop Rotation for High Value Cool Season Horticultural Crop Production in Organic and Sustainable Systems</td>
<td>$200,000</td>
<td>Dr. George Boyhan, University Of Georgia</td>
</tr>
<tr>
<td>LS10-232</td>
<td>Integrating Canola and Sunflower with Organic Grain Production and Southeastern United States</td>
<td>$245,000</td>
<td>Dr. Glynn Tillman, USDA/ARS, Harry Schomberg, USDA ARS</td>
</tr>
<tr>
<td>LS09-220</td>
<td>Does floral farmscaping really improve insect biological control in vegetable systems of the Coastal Plain?</td>
<td>$165,000</td>
<td>Peter Hartell, University of Georgia, John Ruberson, University of Georgia</td>
</tr>
<tr>
<td>LS09-222</td>
<td>Fish extracts for integrated disease, insect and fertility management in organic blueberries</td>
<td>$119,000</td>
<td>Harald Scherm, University of Georgia</td>
</tr>
<tr>
<td>LS07-194</td>
<td>Labor input substitution decisions and business sustainability strategies under changing farm labor market conditions: comparative economic viability analyses of organic and conventional farming systems</td>
<td>$120,000</td>
<td>Dr. Cesar Escalante, University of Georgia</td>
</tr>
<tr>
<td>Project Code</td>
<td>Project Title</td>
<td>Award Amount</td>
<td>PI Name</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>LS07-196</td>
<td>Improved efficiency of grazing dairies using complementary pasture species and</td>
<td>$210,000</td>
<td>Dr. Nicholas Hill</td>
</tr>
<tr>
<td></td>
<td>irrigation scheduling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS07-198</td>
<td>Transition strategies for an organic peanut-grain cropping system</td>
<td>$220,000</td>
<td>Dr. R. Scott Tubbs</td>
</tr>
<tr>
<td>LS06-186</td>
<td>Increasing use of sustainable plants in production and landscape design</td>
<td>$180,000</td>
<td>Dr. Kris Braman</td>
</tr>
<tr>
<td>LS06-190</td>
<td>Perennial legumes as a sustainable source of soil organic matter in Southeastern</td>
<td>$190,000</td>
<td>Carl Jordan</td>
</tr>
<tr>
<td></td>
<td>organic farming systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS05-177</td>
<td>Sustainable Control of Gastrointestinal Nematodes in Small Ruminants</td>
<td>$250,000</td>
<td>Thomas Terrill</td>
</tr>
<tr>
<td>LS04-159</td>
<td>Profitable alternatives to improve water quality from high nutrient status farms</td>
<td>$288,000</td>
<td>Dr. Dorcas Franklin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS04-164</td>
<td>Sustainable Control of Gastrointestinal Nematodes in Small Ruminants using Forages</td>
<td>$15,500</td>
<td>Will R. Getz</td>
</tr>
<tr>
<td></td>
<td>Containing Condensed Tannins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS03-153</td>
<td>Integrating Biological Control into Pecan Weevil Management: A Sustainable</td>
<td>$217,500</td>
<td>Dr. David Shapiro-Ilan</td>
</tr>
<tr>
<td></td>
<td>Approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS02-142</td>
<td>Defining the Research Needs of Farmers in Organic Horticultural Production in</td>
<td>$21,080</td>
<td>Dr. George Boyhan</td>
</tr>
<tr>
<td></td>
<td>the Southeast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS02-143</td>
<td>Novel Methods for Sustainable Control of Gastrointestinal Nematodes in Small</td>
<td>$254,137</td>
<td>Thomas Terrill</td>
</tr>
<tr>
<td></td>
<td>Ruminants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS01-121</td>
<td>Enhancing Sustainability in Cotton Production through Reduced Chemical Inputs,</td>
<td>$207,867</td>
<td>Harry Schomberg</td>
</tr>
<tr>
<td></td>
<td>Cover Crops, and Conservation Tillage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS01-123</td>
<td>Crop/Livestock Integration: Restoring a Traditional Paradigm in Contemporary</td>
<td>$21,121</td>
<td>Gary Hill</td>
</tr>
<tr>
<td></td>
<td>Agricultural Research, Outreach and Practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS01-124</td>
<td>Novel Methods for Sustainable Control of Gastrointestinal Nematodes in Small</td>
<td>$12,600</td>
<td>Thomas Terrill</td>
</tr>
<tr>
<td></td>
<td>Ruminants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS00-114</td>
<td>Investigation of Sustainability of Dairy Goat Industry by Innovative Method of</td>
<td>$225,470</td>
<td>Young Park</td>
</tr>
<tr>
<td></td>
<td>Product Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS98-093</td>
<td>Accountability at Local, State, and Federal Levels for Impacts of Agricultural</td>
<td>$223,322</td>
<td>Dwight Fisher</td>
</tr>
<tr>
<td></td>
<td>Conservation Practices on Water Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS97-088</td>
<td>Producers Assessment of Sustainable Land Management Practices to Protect Water</td>
<td>$228,864</td>
<td>Jill L. Steiner</td>
</tr>
<tr>
<td></td>
<td>Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #</td>
<td>Project Title</td>
<td>SARE Support</td>
<td>Project Leaders</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>LS96-078</td>
<td>Saving the Southern Legacy: Heirloom Plants and Local Knowledge for Profitable, Sustainable Agriculture</td>
<td>$152,817</td>
<td>Robert E. Rhoades University of Georgia</td>
</tr>
<tr>
<td>LS94-057</td>
<td>Disease and Insect Management Using New Crop Rotations for Sustainable Production of Row Crops in the Southeastern United States</td>
<td>$152,200</td>
<td>Barry Cunfer University of Georgia</td>
</tr>
<tr>
<td>LS93-056</td>
<td>Using Soldier Flies as a Manure Management Tool for Volume Reduction, House Fly Control and Feedstuff Production (AS93-09)</td>
<td>$2,150</td>
<td>Craig D. Sheppard University of Georgia</td>
</tr>
<tr>
<td>LS91-043</td>
<td>Cover Crops for Clean Water: A National Conference on the Role of Cover Crops in Improving Water Quality</td>
<td>$8,000</td>
<td>William L. Hargrove University of Georgia</td>
</tr>
<tr>
<td>LS90-025</td>
<td>Development of Fractionation and Treatment Systems for Poultry Litter to Enhance Utilization and Reduce Environmental Impact</td>
<td>$141,000</td>
<td>William C. Merka University of Georgia</td>
</tr>
<tr>
<td>LS90-027</td>
<td>A Low-Input Manure Management System in Animal Housing for Housefly Control, Waste Reduction and Feed</td>
<td>$18,000</td>
<td>Craig D. Sheppard University of Georgia</td>
</tr>
<tr>
<td>LS90-020</td>
<td>Effective Nitrogen for Low-input Forage and Grain Production in a Thermicudic Region</td>
<td>$195,000</td>
<td>R. Russell Bruce USDA/ARS, Southern Piedmont Conservation Research Center</td>
</tr>
<tr>
<td>LS90-024</td>
<td>Development of an Environmentally Safe and Economically Sustainable Year-Round Minimum Tillage Forage Production System Using Farm Animal Manure as the Only Fertilizer</td>
<td>$195,000</td>
<td>Joseph C. Johnson Jr. University of Georgia</td>
</tr>
<tr>
<td>LS88-001</td>
<td>Low-Input and Organic Pest Management for Apples and Peaches Using Mating Disruption and Ground Cover Management</td>
<td>$100,000</td>
<td>F. F. Henrix University of Georgia</td>
</tr>
<tr>
<td>LS88-003</td>
<td>Planning Grant: Development of Low-input Agricultural Technology Demonstrations at the Sunbelt Agricultural Exposition Demonstration Farm</td>
<td>$14,700</td>
<td>John Beasley Rural Development Center</td>
</tr>
<tr>
<td>LS88-007</td>
<td>Low-input Reduced Tillage Crop Production Systems for the Southern United States</td>
<td>$215,000</td>
<td>William L. Hargrove University of Georgia</td>
</tr>
</tbody>
</table>

PROFESSIONAL DEVELOPMENT PROGRAM GRANTS

<table>
<thead>
<tr>
<th>Project #</th>
<th>Project Title</th>
<th>SARE Support</th>
<th>Project Leaders</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES09-096</td>
<td>Training Educators and Agricultural Professionals on Sustainable, Pasture-based Dairy Systems</td>
<td>$89,321</td>
<td>Dr.Dennis Hancock Univ. of Georgia</td>
</tr>
<tr>
<td>ES08-094</td>
<td>Experiential Education to Form an Extension Organic Production Team in Georgia</td>
<td>$18,692</td>
<td>Julia Gaskin University of Georgia</td>
</tr>
<tr>
<td>ES06-084</td>
<td>Smart Drenching and FAMACHA Integrated Training for Sustainable Control of Gastrointestinal Nematodes in Small Ruminants</td>
<td>$72,955</td>
<td>Seyedmehdi Mobini Fort Valley State University</td>
</tr>
<tr>
<td>ES06-086</td>
<td>Southern Region Educator Trainings in Eight Farming Systems using unique tools and approaches</td>
<td>$121,968</td>
<td>Karen Adler Southern Sustainable Agriculture Working Group</td>
</tr>
<tr>
<td>Project #</td>
<td>Project Title</td>
<td>SARE Support</td>
<td>Project Leaders</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>ES03-068</td>
<td>Curriculum in Organic Agriculture for Agents and Teachers</td>
<td>$70,810</td>
<td>Alice Rolls Georgia Organics</td>
</tr>
<tr>
<td>ES99-046</td>
<td>Building Capacity in Organic Agriculture: An Integrated Approach to Training Agricultural Information Providers</td>
<td>$115,000</td>
<td>Alice Rolls Georgia Organics</td>
</tr>
<tr>
<td>ES97-016</td>
<td>Developing Trained Professionals and Teaching Aids to Support Educational Programs Addressing Management of Stored Grain in the Southeast</td>
<td>$38,150</td>
<td>Steve Brown University of Georgia, Extension Entomology, Rural Development Center</td>
</tr>
<tr>
<td></td>
<td>FARMER/RANCHER GRANTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS20-328</td>
<td>Testing Methods to Develop a Soil Food Web in Clay Soils</td>
<td>$14,860</td>
<td>Kirsten Simmons Ecosystem Farm</td>
</tr>
<tr>
<td>FS17-296</td>
<td>Which Wildflower is Best at the Recruitment of Native Bees into Agricultural Areas? A comparison of perennial vs. annual wildflowers</td>
<td>$10,000</td>
<td>Joe Dickey Farmer</td>
</tr>
<tr>
<td>FS17-303</td>
<td>Evaluation of Southern Stem Blight Control in Green Beans with Aerated Compost Tea in Drip System</td>
<td>$6,501</td>
<td>Joseph Reynolds Love is Love Farm</td>
</tr>
<tr>
<td>FS16-290</td>
<td>Measuring the Benefits of Wildflower Plots to Boost Fruit Yield and Pollinator Abundance in Georgia Apple Orchards</td>
<td>$10,000</td>
<td>Joe Dickey Farmer</td>
</tr>
<tr>
<td>FS14-278</td>
<td>Grazing Standing Corn and Climbing Beans</td>
<td>$6,107</td>
<td>Dr.Lynn Barber Heritage Acres</td>
</tr>
<tr>
<td>FS14-286</td>
<td>Production and Marketing of Pumpkin Seed Oil & Related Products</td>
<td>$9,180</td>
<td>Bradley Weaver Bradley’s Farm</td>
</tr>
<tr>
<td>FS13-267</td>
<td>Mechanical and biological strategies to remove invasive Bermuda grass in preparation for organic vegetable production on raised beds</td>
<td>$9,560</td>
<td>Jennifer Taylor Lola's Organic Farm</td>
</tr>
<tr>
<td>FS12-259</td>
<td>Black Soldier Flies as a Value-Adding Tool within Organic Farming Systems</td>
<td>$10,000</td>
<td>Hilary Halford White Oak Pastures, Inc. Lori Moshman White Oak Pastures</td>
</tr>
<tr>
<td>FS11-253</td>
<td>Demonstrating the Potential for Triticale and Annual Ryegrass as both an Alternative Winter Crop and a Soil Organic Matter-Building Practice</td>
<td>$9,997</td>
<td>Jonny Harris Greenview Farms, Inc.</td>
</tr>
<tr>
<td>FS10-249</td>
<td>Production and Marketing of European Melons in the Southeast</td>
<td>$5,390</td>
<td>Brennan Washington Phoenix Gardens, LLC</td>
</tr>
<tr>
<td>FS09-234</td>
<td>“Sweet Petite” Value Added Processing for Small Sized Shrimp</td>
<td>$9,932</td>
<td>James Dubberly Dubberly's Seafood</td>
</tr>
<tr>
<td>FS08-228</td>
<td>Sustainable Production and Niche Marketing of Pearl Millet</td>
<td>$9,911</td>
<td>Bryan Maw</td>
</tr>
<tr>
<td>FS07-212</td>
<td>Control of Corn Earworm using Brazilian free-tailed bats</td>
<td>$999</td>
<td>Frank Bibin Teresa Bibin</td>
</tr>
<tr>
<td>Project #</td>
<td>Project Title</td>
<td>SARE Support</td>
<td>Project Leaders</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>FS06-208</td>
<td>Evaluation of Compost Tea Application to Control Foliar Diseases in an Heirloom Tomato Crop</td>
<td>$9,720</td>
<td>Daniel Parson</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gaia Gardens</td>
</tr>
<tr>
<td>FS02-145</td>
<td>Cotton Mill Farmer’s Market - Linking the Community to the Farm</td>
<td>$15,000</td>
<td>Meredith Barr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carroll Co. Farmland & Rural Preservation Partners</td>
</tr>
<tr>
<td>FS02-156</td>
<td>Winter and Summer Cover Crops for Organic Pecan Production</td>
<td>$9,766</td>
<td>Kim M. Moore</td>
</tr>
<tr>
<td>FS00-106</td>
<td>Cover Crops for Christmas Trees and Other Orchard Crops</td>
<td>$6,327</td>
<td>Thomas Aiken</td>
</tr>
<tr>
<td>FS00-111</td>
<td>Using On-Farm Produced Compost to Reduce Production Costs, Disease and Fertilizer Input in Bell Pepper</td>
<td>$9,536</td>
<td>Bill Brimm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lewis Taylor Farm</td>
</tr>
<tr>
<td>FS99-086</td>
<td>Paper Wasp Colonization for Tent Caterpillar Control in Pecan Groves</td>
<td>$506</td>
<td>Frank Bibin</td>
</tr>
<tr>
<td>FS99-099</td>
<td>Alum Amended Solids Separation and Composting of Swine Waste</td>
<td>$9,100</td>
<td>Jimmy Shealy</td>
</tr>
<tr>
<td>FS99-101</td>
<td>Sustainable Winter Squash Production Using Poultry Litter</td>
<td>$4,985</td>
<td>Johnnie L. Stubbs</td>
</tr>
<tr>
<td>FS98-072</td>
<td>Microbial Input for Organic Production of Vegetables</td>
<td>$9,039</td>
<td>Skip Glover</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glover Family Farm</td>
</tr>
<tr>
<td>FS98-074</td>
<td>Alfalfa Hay Production to Lower Soil Phosphorus Levels Caused by Animal Waste Application</td>
<td>$9,556</td>
<td>Keith Boozer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Piedmont Area Poultry Association</td>
</tr>
<tr>
<td>FS98-082</td>
<td>Using Shearing to Control Nantucket Pine Tip Moth in Virginia Pine Christmas Trees</td>
<td>$5,672</td>
<td>William Slaughter</td>
</tr>
<tr>
<td>FS97-058</td>
<td>Evaluation of an Alternative Low-Input Production System for Fresh Market Tomato</td>
<td>$5,109</td>
<td>Greg & Dale Murray</td>
</tr>
<tr>
<td>FS97-061</td>
<td>Algae-based Winter Feed for Small-Scale Goat</td>
<td>$7,907</td>
<td>Rosemarie Szostak</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oak Hill Farm</td>
</tr>
<tr>
<td>FS94-004</td>
<td>Nutrient Evaluation and On-Site Composting of Poultry Litter</td>
<td>$3,000</td>
<td>Andy Hickox</td>
</tr>
<tr>
<td>FS94-006</td>
<td>Insect Pest Management for Cotton</td>
<td>$8,700</td>
<td>Benny Johnston</td>
</tr>
</tbody>
</table>

GRADUATE STUDENT GRANTS

<table>
<thead>
<tr>
<th>Project #</th>
<th>Project Title</th>
<th>SARE Support</th>
<th>Project Leaders</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS20-233</td>
<td>Effect of Ground Cover Management on Predators and Predation of Halyomorpha halys in Georgia Peach Orchards</td>
<td>$16,111</td>
<td>Brett Blaauw</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>University of Georgia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Daniel O’Connell</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>University of Georgia</td>
</tr>
<tr>
<td>GS19-217</td>
<td>Evaluating Stakeholder Perceptions on Palmer Amaranth Management in Georgia</td>
<td>$14,797</td>
<td>Jennifer Thompson</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>David Weisberger</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>University of Georgia</td>
</tr>
<tr>
<td>Project Code</td>
<td>Title</td>
<td>Amount</td>
<td>Principal Investigator(s)</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>GS19-197</td>
<td>Aphid Parasitism: A Sustainable BioControl Option Against Aphid Pests of Pecans in the Southeastern U.S.</td>
<td>$14,740</td>
<td>Dr. Angel Acebes-Doria, Eddie Slusher, University of Georgia-Tifton</td>
</tr>
<tr>
<td>GS19-216</td>
<td>Assessing the Conditions Informing Direct-to-Consumer Access for Hispanic Immigrant Farmers in South Florida</td>
<td>$16,380</td>
<td>Jennifer Thompson, Emily Ramsey, University of Georgia</td>
</tr>
<tr>
<td>GS18-180</td>
<td>Leveraging Pest Behavior for Implementation of Sustainable Management Tactics for Plum Curculio in Southeastern Peach Production</td>
<td>$16,464</td>
<td>Brett Blaauw, Tzu-Chin Liu, University of Georgia</td>
</tr>
<tr>
<td>GS18-182</td>
<td>Effects of Imidacloprid Soil Drench Applications on Nesting Blue Orchard Mason Bees (Osmia lignaria)</td>
<td>$16,490</td>
<td>Dr. Kamal Gandhi, Dr. Christine Fortuin, University of Georgia</td>
</tr>
<tr>
<td>GS16-159</td>
<td>Evaluation of Pest and Disease Resistance in Winter Squash Varieties Under Organic Management in the Southeast</td>
<td>$10,944</td>
<td>Dr. Elizabeth Little, Zachary Matteen, University of Georgia</td>
</tr>
<tr>
<td>GS16-163</td>
<td>Evaluating conservation biological control options for spotted wing drosophilida (Drosophila suzukii)</td>
<td>$10,849</td>
<td>Dr. Jason Schmidt, Seth Whitehouse, University of Georgia</td>
</tr>
<tr>
<td>GNC15-208</td>
<td>Why Do They Quit? Identifying Key Determinants of Beginning Farmers’ Decisions</td>
<td>$9,855</td>
<td>Dr. Peggy Barlett, Andrea Rissing, Emory University</td>
</tr>
<tr>
<td>GS15-147</td>
<td>Evaluation of High Tunnel Systems for Spring Organic Lettuce Production in Georgia</td>
<td>$11,000</td>
<td>Dr. Suzanne O’Connell, Theekshana Jayalath, University of Georgia</td>
</tr>
<tr>
<td>GS14-127</td>
<td>Controlling Squash Bugs (Anasa tristis) Using Cover Crops and Organic Insecticides</td>
<td>$2,436</td>
<td>David Berle, Lindsay Davies, University of Georgia</td>
</tr>
<tr>
<td>GS14-139</td>
<td>A novel technique for treating seeds with biocontrol agents for the sustainable management of bacterial fruit blotch of watermelon</td>
<td>$9,500</td>
<td>Dr. Ron Walcott, Safira Sutton, University of Georgia</td>
</tr>
<tr>
<td>GS09-080</td>
<td>Emerging Local Food Systems – The Role of Locally Developed Innovation in Small-scale Sustainable Farming in Northeast Georgia</td>
<td>$8,492</td>
<td>Carl Jordan, Justin Ellis, University of Georgia</td>
</tr>
<tr>
<td>GS08-074</td>
<td>Seeds of Persistence: The Ethnoecology of Crop Agrobiodiversity Maintenance in the American Mountain South</td>
<td>$10,000</td>
<td>Robert E. Rhoades, Dr. James Veteto, University of Georgia</td>
</tr>
<tr>
<td>GS06-054</td>
<td>Novel methods for sustainable control of gastrointestinal nematodes in llamas and alpacas in the southeastern United States</td>
<td>$10,000</td>
<td>Thomas Terrill, Rose-Ann Gillespie, Fort Valley State University</td>
</tr>
<tr>
<td>GS05-043</td>
<td>BT Cotton, Tillage and Cover Crops Identity: Relative Effects on Above and Below Ground Invertebrate Diversity</td>
<td>$2,895</td>
<td>Mark Hunter, Kyle Wickings, University of Georgia</td>
</tr>
</tbody>
</table>
Effects of the Quality of Organic Soil Amendments on the Soil Community and on Nitrogen Mineralization in an Agroecosystem in the Georgia Piedmont

Velvet Bean as a Biological Control of Weeds and Pathogens

ON FARM RESEARCH/PARTNERSHIP GRANTS

<table>
<thead>
<tr>
<th>Project #</th>
<th>Project Title</th>
<th>SARE Support</th>
<th>Project Leaders</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS19-126</td>
<td>Off-season Plant-parasitic Nematode Management for Vegetables through Biofumigant Cover Crops</td>
<td>$15,000</td>
<td>Abolfazl Hajihassani, University of Georgia</td>
</tr>
<tr>
<td>OS17-102</td>
<td>Scale Management to Promote Sustainable Southeastern Peach Production</td>
<td>$14,985</td>
<td>Brett Blaauw, University of Georgia</td>
</tr>
<tr>
<td>OS14-090</td>
<td>Investigating Artificial Native Bee Habitats as a Means to Boost Native Bee Pollination and Provide an Additional Revenue Source for Farmers</td>
<td>$15,000</td>
<td>Dr. Mark Schlueter, Georgia Gwinnet College</td>
</tr>
<tr>
<td>OS13-074</td>
<td>Enhancement of Native Bee Pollination Services in Apples Orchards in Georgia</td>
<td>$15,000</td>
<td>Dr. Mark Schlueter, Georgia Gwinnet College</td>
</tr>
<tr>
<td>OS13-081</td>
<td>Nesting Habitat Enhancements and Native Bee Population Measurements in Apple Orchards in Georgia</td>
<td>$15,000</td>
<td>Dr. Mark Schlueter, Georgia Gwinnet College</td>
</tr>
<tr>
<td>OS12-066</td>
<td>Native Bee Assessment in North Georgia Apple Orchards: Measuring Diversity and Devising Methods to Boost Abundance</td>
<td>$15,000</td>
<td>Dr. Mark Schlueter, Georgia Gwinnet College</td>
</tr>
<tr>
<td>OS11-061</td>
<td>A Measurement of the Pollination Success of Native Bees in North Georgia Apple Orchards: Is there a need for Commercial European Honeybees?</td>
<td>$15,000</td>
<td>Dr. Mark Schlueter, Georgia Gwinnet College</td>
</tr>
<tr>
<td>OS09-049</td>
<td>Creating, planning, and using forage quality budgets to optimize milk production on grazing dairies</td>
<td>$14,340</td>
<td>David Kissel, University of Georgia</td>
</tr>
<tr>
<td>OS07-034</td>
<td>Hydroseeded mulch as an alternative to plastic mulch films</td>
<td>$14,000</td>
<td>Dr. Gary L. Hawkins, University of Georgia</td>
</tr>
<tr>
<td>OS04-020</td>
<td>Increasing Farm Sustainability through the Use of Cover Crops for Weed Suppression in Non-Transgenic Conventional Cotton</td>
<td>$15,000</td>
<td>Dr. Gary L. Hawkins, University of Georgia</td>
</tr>
</tbody>
</table>

SUSTAINABLE COMMUNITY INNOVATION GRANTS

<table>
<thead>
<tr>
<th>Project #</th>
<th>Project Title</th>
<th>SARE Support</th>
<th>Project Leaders</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS10-080</td>
<td>Farm to Market Alliance</td>
<td>$10,000</td>
<td>Christine McCauley, Madison-Morgan Conservancy</td>
</tr>
<tr>
<td>CS09-073</td>
<td>Marketing Local Value Added Products in Southwest Georgia</td>
<td>$9,934</td>
<td>Cornelius Key, Federation of Southern Cooperative/LAF</td>
</tr>
</tbody>
</table>
Building Sustainable Agriculture and Community Development along the Coastal Plain regions of Georgia and South Carolina

Something’s Cooking in the Kitchen

Sustainable Farming: wedding regional agriculture and community development in Coastal Georgia

Rural Women as Agriculture Leaders

Battlefield Farmers’ Market - Growing New Opportunities

Comer Farmers’ Market

Putting Pike on the Map

Downtown Farmers’ Market-Linking the Farm to the Community

Total funding from the USDA SARE program to Georgia $10,400,540

For further information on projects, contact Candace Pollock, Southern SARE public relations coordinator, at (770) 412-4786 or cpollock@uga.edu.
Sustainable Agriculture Research and Education (SARE) is funded by USDA’s National Institute of Food and Agriculture (NIFA).